If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-10p=35
We move all terms to the left:
p^2-10p-(35)=0
a = 1; b = -10; c = -35;
Δ = b2-4ac
Δ = -102-4·1·(-35)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{15}}{2*1}=\frac{10-4\sqrt{15}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{15}}{2*1}=\frac{10+4\sqrt{15}}{2} $
| 3x-22=4*(x-5) | | X2+204x+1260=0 | | 3(x-2)²+10=0 | | 5{x3}=20 | | -2m+8=-4 | | 6m-2=-6 | | 6x²+48x-17=0 | | 10p=(-100) | | 2x(x-5)=9 | | -3m=-2 | | 5x+10/2=15 | | 5x+10+12x=6x | | -5m=-3 | | 21+15x-3x2=0 | | x2=-7x+8 | | -3z=8 | | 4+3(m+4)=16 | | 15x+12x=6x | | (3x/4)-1=(x/3)+(1/2) | | 22=x=225 | | 7(4w+6)/2=-4 | | 4-2m+4m=1 | | B2-2b-15=0 | | 10p=(̶100) | | 23x-7x+26-4x+4=126 | | 7x+5=2x-11 | | 8x=(6+5) | | 2x-14=x+55 | | x^2+5/2x-6=0 | | Y=1200+150x | | -1/2*(-3x+13)/12=0 | | 3x^2+107x-56=0 |